
Volume-1 | Issue-3 | Aug 2019 21

Introduction

With the rise of APIs also comes

the potential for more security

holes, meaning coders need to

understand the risk to keep corporate

and customer data safe. According

to Gartner, by 2022, API abuses will

be the most–frequent attack vector

for enterprise web applications data

breaches. It is no wonder that many IT

decision makers today are concerned

about API security.

In 2018 itself, there have been

more than a half dozen headlines

of data breaches where APIs were

listed as the exploited mechanism

to illegally extract data. Hackers are

sophisticated and are constantly

API Design Principles & Security Best
Practices – Accelerate your business

without compromising security
– Anil Lamba

CISA, CDPPM, practice lead Cyber security, EXL Service Inc., NJ, USA
dranillamba@outlook.com

looking into new ways to break

down defenses and access valuable

data. Taking the appropriate security

measures throughout the design

process can ensure that your API is

used properly by those you allow to

interact with your application.

In this article, we’ll take a look at API

security best practices, and discuss

strategies for securing APIs.

API Security Best Practices – 1.	 If

you are building an API for public

use or even only for your internal

services, the following needs to

be considered before augmenting

any additional security layer or

technology:

Authentication –•	 API

authentication means determining

that the client application has an

identity that is allowed to use

the API. API must be able to

authenticate itself to the Apps

which consume it. Likewise,

when your API interacts with

Servers, they must authenticate

themselves to the API. Tokens

should expire regularly to protect

against replay attacks. Most

enterprises will use an internal

database or LDAP authentication

store, though Oath may be a

better option for highly public

APIs.

APIs are a strategic necessity to give your business the agility, innovation and speed needed

to succeed in today’s business environment. However, the financial incentive associated with

this agility is often tempered with the fear of undue exposure of the valuable information that

these APIs expose.

Scrutiny Tip

Volume-1 | Issue-3 | Aug 201922

Scrutiny Tip

Multi–factor Authentication •	
(MFA) – Multi–factor

Authentication (MFA) requires a

user to use a one–time usage token

they receive after authenticating

with her credentials. The User

may also have a digital key

which is a token that the App can

validate. When the App receives

the token which it validates with

the MFA Provider, it proceeds to

consume your API. Tokens are

usually issued with an expiration

period and can be revoked.

Authorization – •	 Authorization is

determining the scope of interaction

allowed – that is, what actions and

data the authenticated application

has access to when using the API.

This is typically best handled by

application logic for e.g. using an

access control framework, such

as OAuth. However, it is best to

augment this functionality using

an API gateway. The following two

ways are also used for defining

level of authorization required by

the user -

Role–based Access Control •	
(RBAC) – Static assignment

of roles to Users based on the

organizational groups to which

they belong. Groups are role and

App agnostic, they are purely

business–level decisions. In

RBAC an App uses roles to assign

degrees of access to groups of

Users which the role represents.

Attribute–based access control •	
(ABAC) – Attribute–based

Access Control (ABAC)

aims to facilitate the

dynamic determination

of access control based

on some sort of circumstantial

information available at the time

of the API call.

Make security the number one •	
priority – Developers often have

a feature–driven mindset, where

functionality has taken precedence

over security. Unfortunately,

in today’s security landscape,

vulnerabilities and threats lurk

at every corner and have ever–

growing consequences, so we

have to turn this on its head.

Encryption – •	 SSL/TLS encryption

is mainstream and should be

used for both public and internal

APIs to protect against man in the

middle attacks, replay attacks,

and snooping. For external APIs

the web server can handle this

directly or a reverse proxy can be

employed. A service mesh can be

used for internal APIs libraries to

add automatic encryption on top

of service discovery and routing.

Protecting your API •	
– Developers must ensure that

the API properly validates all input

from the user to prevent XSS and

SQL Injection. There are many

ways to protect against these

types of vulnerabilities including

but not limited to “cleaning user

input to prevent XSS”, as well

as preventing SQL Injection by

“preparing statements with bind

variables”.

Block Large Requests and •	
Responses – Some attackers

may try to overwhelm the

API or trigger a buffer overflow

vulnerability with large requests.

These may be in the form of a large

JSON body or even unusually

large individual JSON parameters

within the request. Abnormally

large response may also be

indicator of data theft. Create

custom rules to track and block

these suspicious requests. A

web application firewall can

automatically detect and blocks

this type of input abuse.

Throttling your API –•	 Throttling

is a means of controlling or

limiting a client’s access to your

data. There are two key API

throttles that will provide you with

additional control & security for

your APIs:

IP–based throttling •	 – Using IP–

based throttling you can restrict

the number of API calls made

by a particular IP address. In

addition, you could ensure that

your API can only be accessed by

a particular set of IP addresses.

Rate–limit throttling •	 – Rate–

limit throttling allows API requests

to be made until a certain limit

has been reached for a specific

time period. By utilizing rate–

limit throttling within your API

you can help to ensure that the

database isn’t overwhelmed by

one particular client who may be

misusing your interface.

Building tests that don’t •	
represent real functional
use – Performing tests without

considering how the APIs will be

consumed may be quicker in the

short–term. However, in doing

so, you won’t be testing across

concerns, which could prevent you

from uncovering and debugging

potentially serious API issues.

Custom API Rules – Build •	
your own business logic rules
for security, for e.g. a simple

protection might be to identify

your authentication token (in the

HTTP header or in the JSON

body) and require it to always

Volume-1 | Issue-3 | Aug 2019 23

be present to block and log

any unauthenticated attempts.

Another example would be to

enforce the Content–Type header

to be what is expected for your

API (e.g. application/json) or

block unused or non–public HTTP

methods (e.g. PUT and DELETE)

to further lock down the API.

Testing APIs in a vacuum •	
– Building API tests can be a bit

of a solo act, but the minute a test

is in your workflow, it requires

the attention of different teams in

your organization. If you set up

test failure notifications to go to

just you, you’re adding time, effort

and headaches to your workflow.

Keys in URI – •	 For some use

cases, implementing API keys for

authentication and authorization is

good enough. However, sending

the key as part of the Uniform

Resource Identifier (URI) can lead

to the key being compromised. As

explained in IETF RFC 6819, It’s

safer to send API keys is in the

message authorization header,

which is not logged by network

elements. As a rule of thumb, the

use of the HTTP POST method

with payload carrying sensitive

information is recommended.

Geofencing – •	 If your API is public,

it might make sense to either

block users from countries you

don’t do business with, or at least

raise the risk score of entities that

come from those countries.

API Fuzzing Protection – •	 You

may have a combination of

documented and undocumented

features in your APIs. Attackers

may attempt to map and

exploit the undocumented

features by iterating or fuzzing

the endpoints. Install a web

application firewall for application

profiling and behavior tracking.

L7 DOS Protection – •	 You have

protected the front–end of the API

with rate–limiting, but the back–

end services can still be exposed

to Layer 7 denial of service.

Customize a web application

firewall to ensure long–running

queries gets tarpitted and

eventually blocked automatically.

Use Auditing and Logging •	
– Auditing should never be

skipped. Logging should be

systematic and independent, and

resistant to log injection attacks.

Auditing should be used as a

tool for detecting and proactively

preventing attacks.

Monitor add–on software •	
carefully – One popular use

of the interfaces is to allow

third parties to write add–on

apps for a platform. A potential

monster is such interfaces often

give developers a high level of

authorization rights. Hackers

covet those privileges and will

voraciously try to dig out such

system vulnerabilities.

Secure the exit gateways •	
– Businesses need to set up

another checkpoint on the way

out of the network. Even If a

hacker worms into the system and

accesses confidential information,

it has value only if the data can be

moved out to their own systems.

In other words, if you miss a crook

on the way in, you still can thwart

him on the way out.

Stack Trace – •	 Many API

developers become comfortable

using 200 for all success

requests, 404 for all failures,

500 for some internal

server errors, and,

in some extreme

cases, 200 with a failure

message in the body, on top

of a detailed stack trace. A stack

trace can potentially become an

information leak which attackers

can exploit by submitting crafted

URL requests. It’s a good practice

to return a “balanced” error

object, with the right HTTP status

code, with minimum required

error message(s) and “no stack

trace” during error conditions.

This will improve error handling

and protect API implementation

details from an attacker.

Consider Adding Timestamp •	
in Request – Along with other

request parameters, you may add

a request timestamp as HTTP

custom header in API request.

The server will compare the

current timestamp to the request

timestamp, and only accepts the

request if it is within a reasonable

timeframe (1–2 minutes,

perhaps). This will prevent very

basic replay attacks from people

who are trying to brute force your

system without changing this

timestamp.

2)	 Design Guidelines for
Developers – DevOps has made

allocating resources simpler

and faster, but at the same

time, being under pressure to

deliver new releases ASAP,

well intentioned, responsible

programmers sometimes hurry

and make mistakes. Here are

Scrutiny Tip

Volume-1 | Issue-3 | Aug 201924

Scrutiny Tip

design guidelines for developing

secured APIs: –

Drop Basic Authentication •	
– Basic Authentication is

the simplest form of HTTP

authentication. With each request,

users submit their credentials as

plain and potentially unencrypted

HTTP fields. Instead, use a

more secure method such

as JWT or OAuth.

Don’t ship a home–grown •	
solution – Never try to implement

your own authentication, token

generation, or password storage

methods. Depending on your

application’s language or

framework, chances are there

are existing solutions with proven

security.

Never expose information or URLs
– Usernames, passwords, session

tokens, and API keys should not

appear in the URL, as this can be

captured in web server logs, which

makes them easily exploitable. For

example, below mentioned URL

exposes API key So, never use this

form of security. “https://api.domain.

com/user–management/users/{id}/

someAction?apiKey=abcd123456789

//Very BAD !!”

Implement Max Retry and Jail •	
safety mechanisms – Attackers

will try to authenticate using a

variety of credential combinations.

Setting a maximum number of

retries blocks users who fail too

many authentication attempts

in a certain amount of time.

Users who exceed the

number of max retries

are placed in a “jail” which

prevents further login attempts

from their IP address until a

certain amount of time passes.

Encrypt Everything –•	 Always

encrypt data before transmission

and at rest. Intercepting and

reading plain HTTP is trivial for

an attacker located anywhere

between you and your users.

Encryption makes it exponentially

harder for credentials and other

important information to be

compromised. Secure HTTP

(HTTPS) encrypts data between

clients and servers, preventing

bad actors from reading this data.

Limit Requests – •	 One of the most

common attacks on the Internet is

a Denial of Service (DoS) attack,

which involves sending a large

number of requests to a server.

The server tries to respond to

each request and eventually

runs out of resources. Rate

limit requests to mitigate DoS

attacks by throttling or blocking

IP addresses.

Enforce HTTP Methods – •	 Each

of your API’s endpoints should

have a list of valid HTTP methods

such as GET, POST, PUT, and

DELETE. These methods should

correlate to the action the user

is attempting to perform (for

example, GET should always

return a resource, and DELETE

should always delete a resource).

Any operations that don’t match

those methods should return

405 Method Not Allowed. This

prevents users from accidentally

(or intentionally) performing the

wrong action by using the wrong

method.

Validate User–Submitted •	
Content – Validate all data to

prevent application layer attacks,

such as, Cross–site scripting,

Code injection, Remote Code

Execution Business logic, Cross–

Site Scripting (XSS)Parameter

pollution attacks. You can mitigate

these attacks by scrubbing user

input of HTML tags, JavaScript

tags, and SQL statements before

processing it on the server.

Remove Components with •	
Vulnerabilities – Remove unused

dependencies, unnecessary

features, components, files, and

documentation. Continuously

check the versions of your

dependencies for known

security flaws. When picking

new dependencies only add

code from official sources over

secure links. Consider monitoring

for libraries and components

that are unmaintained or do not

create security patches for older

versions.

Protect Sensitive Endpoints •	
– Make sure that all endpoints

with access to sensitive data

require authentication. This

prevents unauthenticated users

from accessing secure areas

of the application and perform

actions as anonymous users.

Avoid Using Auto–Incrementing •	
IDs – Auto–incrementing IDs

make it trivial for attackers to

guess the URL of resources they

may not have access to. Instead,

use universally unique identifiers

(UUID) to identify resources.

Apply strict input validation •	
– Restrict parameter values to

a whitelist of expected values,

validate posted structures data

against a formal schema language

in order to restrict the content

Volume-1 | Issue-3 | Aug 2019 25

Scrutiny Tip

and structure and blacklist risky

content, such as SQL schema

manipulation statements.

Use Password Hash •	
– Passwords must always be

hashed to protect the system

(or minimize the damage) even

if it is compromised in some

hacking attempt. There are

many such hashing algorithms

which can prove really effective

for password security e.g. MD5,

SHA, PBKDF2, bcrypt and scrypt

algorithms.

Turn Debug Mode Off – •	 While

it may seem obvious, make

sure your application is set

to production mode before

deployment. Running a debug

API in production could result in

performance issues, unintended

operations such as test endpoints

and backdoors, and expose data

sensitive to your organization or

development team.

Logging & Monitoring – •	 Ensure

all login, access control failures,

and server–side input validation

failures can be logged with

sufficient user context to identify

suspicious activity or malicious

accounts and retained for

sufficient time to allow delayed

forensic analysis. Logging

all API access is essential to

assist resolving any issues, and

potentially discover any patterns

or excessive usage activity.

Conclusion:
API usage is rising and empowering

businesses to build more dynamic

applications. However, as they take

advantage of these capabilities,

organizations need to be aware of the

potential security holes, close them

timely and ensure that security is the

number one priority.

An unsecured API /

application endpoint can

serve as a gateway to the

data centre by which attackers

can effectively attack the backend

and there is no silver bullet when it

comes to its security.

Goal of this article is to make

developers understand design

principles and security best practices,

to protect their APIs from malicious

activity. Potential threats can often

be avoided by thinking critically about

these practices and applying them

to avoid breaches and help your

business maximize its potential.

Dr Anil Lamba is a notable industry speaker, researcher, an innovator, and an influencer with proven success in
spearheading Strategic Information Security Initiativesand Large-scale IT Infrastructure projects across industry
verticals. He is Ph.D. Cyber Security, CISA ® and hold various other impressive industry credentials*. He has
helped bring about a profound shift in cybersecurity defense. Throughout his career, Anil Lamba has parlayed his
extensive background in security and a deep knowledge to help organizations build and implement strategic
cybersecurity solutions.

Industry Credentials*: Ph.D. Cyber Security, M.B.A. – Strategic Project Management, CISA ®, CISSP, CDCP,
CPD, CFE, PMP, Amazon Web Services (AWS) Certified Architect, AZURE Certified, Prince2, ITIL Expert, ISO 27001 Lead,
Auditor, MCSE, 6σ Sigma Green Belt, CEH and CCNA.

He has performed various IT Security & Governance initiatives viz. Cloud Security Audits, Secure SDLC Audits, Penetration
tests, Tabletop exercises, Data Warehouse (i.e. Enterprise Data Lake & Grid) Audits, Regulatory as well as Industry standard
assessments and Pre-Mergers & Acquisitions assessment projects across industry verticals. Anil has gained his expert reputation
by staying at the leading edge of security research and mentoring security teams, developers and audit experts across various
industries. Anil has strived to change the way organizations approach security, placing an emphasis on making informed decisions
regarding products and services to best protect the organization, employees, and customers. He has spent much of his career
meeting with CISOs and CIOs to advise and educate them on threats, required policies, processes, and expertise.

Anil has given more than 29 researches and 6 conference papers to information & cyber security world. His career has focused on
high impact research in Cyber Securityas well as its applied practice in real world and bringing it to everyone’s use and education
for free. His researches has educated the industry and the general public on the evolving threats to our interconnected world. He
serves on the board member, reviewer& editor of several computer science related research journals.

Per Anil, “Effective cyber security requires science, engineering, business, policy and people skills. My goal has been and is to
instill this culture in the discipline and provide leadership in all elements.”

By Career, He is Practice Lead – Cyber Security for a Consulting company named EXL. As a security professional, Anil has spent
more than 15 years in cybersecurity operations leadership and influencing policy level decisions in multiple client organizations and
helping clients understand cyber security challenges,. Some of these organizations included some of the largest pharmaceutical,
Fortune 500 banking & financial and telecommunications companies in the U.S.

Anil leverages his skills and pervasive industry experience to help customers understand risks in their systems and develops
programs to mitigate those risks. He has automated various cyber security, privacy and data security audit programs which has
in-turn saved a lot of time for our clients as well as improved the practice. He has been a trusted advisor to the legal team to
ensure that the right security clauses are built into supplier and customer contracts. He has also enabled engineering development
teams of our clients with secure code practices and have performed reviews and quality assurance tests for functional and security
verification.

He has always volunteered himself to act as a cybersecurity adviser for undergraduate college students conducting independent
researches. He has presented research and other topics at many conferences over the years. His published researches and
conference papers since 2014 has led to many thought provoking examples for augmenting better security. His Ph.D. thesis on
Cyber Crime became a famous literature for inspiring cyber security and law students.

dranillamba@outlook.com

